[Fe/H] Calculator

The formula used to determine [Fe/H] is, as usual,

$$[\text{Fe/H}] = \log \left[\frac{(\text{N}_{\text{Fe}}/\text{N}_{\text{H}})_{\text{star}}}{(\text{N}_{\text{Fe}}/\text{N}_{\text{H}})_{\odot}} \right], \tag{1}$$

where N_{Fe} and N_{H} are the number of iron and hydrogen atoms per unit mass, respectively. The ratio between N_{Fe} and N_{H} is determined by

$$\frac{N_{\text{Fe}}}{N_{\text{H}}} = f_{\text{Fe}}(\alpha) \times \frac{Z/m_Z(\alpha)}{(1 - Y - Z)/m_H},\tag{2}$$

where Y and Z are the abundances by mass of helium and metals heavier than helium, respectively; $f_{\rm Fe}(\alpha)$ is the number fraction of iron with respect to all the elements heavier than helium; m_H is the mass of the hydrogen atom; and $m_Z(\alpha)$ is the average atomic mass of heavy elements weighted by the number of atoms. It is important to note that $f_{\rm Fe}(\alpha)$ and $m_Z(\alpha)$ depend on the fraction of α -elements ($[\alpha/{\rm Fe}]$).

Thus, the relative iron abundance with respect to the solar iron abundance for any $[\alpha/\text{Fe}]$ value is

$$\left[\text{Fe/H}\right]_{\alpha} = \log \left[\frac{f_{\text{Fe}}(\alpha)}{f_{\text{Fe}}(0)} \times \frac{m_Z(0)}{m_Z(\alpha)} \times \frac{Z}{1 - Y - Z} \times \left(\frac{Z}{X}\right)_{\odot}^{-1} \right], \tag{3}$$

where the values of $f_{\rm Fe}(0)$ and $m_Z(0)$ are approximately 0.0235 and 17.03 m_H , respectively, for the solar chemical composition presented by Grevesse & Sauval (1998, Space Sci. Rev., 85, 161). In the case of the values of $f_{\rm Fe}(\alpha)$ and $m_Z(\alpha)$, they are interpolated for any α using the interpolation algorithm of Hill (1982, Publications of the Dominion Astrophysical Observatory Victoria, 16, 67) and the chemical distribution of elements for each $[\alpha/{\rm Fe}]$ listed in http://webs.wichita.edu/physics/opacity/ (Ferguson et al. 2005, ApJ, 623, 585).